Asymptotic behavior of a planar dynamic system
نویسندگان
چکیده
منابع مشابه
Asymptotic Behavior of a Planar Dynamic System
We investigate the asymptotic solutions of the planar dynamic systems and the second order equations on a time scale by using a new version of Levinson’s asymptotic theorem. In this version the error estimate is given in terms of the characteristic (Riccati) functions which are constructed from the phase functions of an asymptotic solution. It means that the improvement of the approximation dep...
متن کاملDynamic Behavior Analysis of a Planar Four-bar Linkage with Multiple Clearances Joint
In practice, clearances in the joints are inevitable due to tolerances, and defects arising from design and manufacturing. In the presence of clearance at a joint, a mechanism gains some additional, uncontrollable degrees of freedom which are the source of error. Moreover, joints undergo wear and backlashes and so cannot be used in precision mechanisms. In this study, the dynamic behaviour of ...
متن کاملAsymptotic behavior of a system of two difference equations of exponential form
In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...
متن کاملAsymptotic behavior of second-order dynamic equations
We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as special cases results for second-order differential equations, difference equations, and q-difference equations. 2006 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2014
ISSN: 0035-7596
DOI: 10.1216/rmj-2014-44-4-1203